R-19

Code: 1305/R

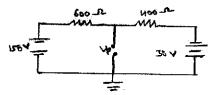
Faculty of Science

B. Sc (Electronics) I-Year, CBCS-I Semester Regular Examinations, Dec/Jan 2019-20 **PAPER: CIRCUIT ANALYSIS**

Time: 3 Hours

Max Marks: 80

Section-A


I. Answer EIGHT from the following questions (Two from each part) (8x4=32 Marks)

PART-A

- 1. Write a short note on J operator.
- 2. Differentiate voltage and current sources.
- The peak value of a sine wave is 1V. Find average and rms values.

PART-B

- 4. State superposition theorem and draw the circuit diagram.
- State reciprocity theorem and list its applications.
- 6. Determine V_P by superposition in following circuit:

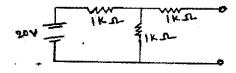
PART-C

- 7. Discuss about transient response of RL circuit with step input.
- 8. Obtain frequency response of a passive differentiating circuit.
- 9. Calculate time constant for circuit with C=0.001 μ F and R=1M Ω .

PART-D

- Define Q factor and selectivity.
- 11. Write a note on functioning of electron gun.
- 12. Find f_r for a series circuit with C=10 μ F and L=16H and R= 5 Ω .

Section-B


II. Answer the following questions

(4x12=48 Marks)

(a) Define average and RMS values. Explain in detail about complex impendence and admittance.

(OR)

- (b) State and explain Kirchoff's voltage and current laws.
- 14. (a) State and explain Thevenin's theorem. Find Thevenin equivalent circuit for following circuit:

(OR)

- (b) State and explain Maximum power transfer theorem. Give its applications.
- 15. (a) Obtain frequency response of an RC circuit.

- (b) What are different types of filters? Obtain frequency response of a high pass filter.
- 16. (a)Obtain expression for resonant frequency of a RLC parallel resonance circuit.

(OR)

(b) Explain working of a cathode ray tube.

\smile
\smile
\smile
\smile
\smile
)
Ü
$\overline{}$
\smile
\
\smile
\sim
$\overline{}$
\smile
Ú
Ü
$\overline{}$
\smile
\mathbf{C}
U
\smile
$\overline{}$
$\overline{}$
Ċ
$\overline{}$
\sim
\sim
\
)