Code: 6308E2/19

Faculty of Science

B.Sc (Mathematics) III-Year, CBCS-VI Semester Examinations, May/June 2019 PAPER: VECTOR CALCULUS

Time: 3 Hours

000000000

Max Marks: 60

Section-A

I. Answer any Three of the following questions.

(3x5=15 Marks)

- 1. Evaluate the line integral of the vector field $u=(xy,z^2,x)$ along the curve given by x=1+t, y=0, $z=t^2$, $0 \le t \le 3$
- 2. Evaluate surface integral of u=(xy,x,x+y) over the surface S defined by z=0 with $0 \le x \le 1, 0 \le y \le 2$, with the normal n directed in the positive z direction .
- 3. A cube $0 \le x, y, z \le 1$ has a variable density given by $\rho = 1 + x + y + z$. Then find the total mass of the cube.
- 4. If the scalar field f = xyz, then find grad(f).
- 5. Find the divergence of a vector field u = (y, z, x)
- 6. If the vector field u = (xy, z + x, y) . Then calculate $\nabla \times u$

Section-B

II. Answer the following questions.

(3x15=45 Marks)

7. (a) Find the line integral of the vector field $u=(y^2,x,z)$ along the curve given by $z=y=e^x$ from x=0 to x=1.

(OR)

- (b) If S is the entire x,y plane, evaluate the integral $I=\iint_S e^{-x^2-y^2} dS$, by transforming the integral into polar coordinates.
- 8. (a) Find the volume integral of the scalar field $\emptyset = x^2 + y^2 + z^2$ over the region V specified by $0 \le x \le 1, 1 \le y \le 2, 0 \le z \le 3$.

(OR)

- (b) Find the directional derivative of the scalar field $f=2x+y+z^2$ in the direction of the vector (1,1,1) , and evaluate at the origin .
- 9. (a) Find the Laplacian $\nabla^2 \emptyset$ for the scalar field $\emptyset = x^2 + xy + y^2$ (OR)
 - (b) If c, d are scalars and u, v are vectors, then show that $\nabla \times (cu + dv) = c \nabla \times u + d \nabla \times v$

Code: 6308E1/19

Faculty of Science

B.Sc (Mathematics) III-Year, CBCS-VI Semester Examinations, May/June 2019 **PAPER: COMPLEX ANALYSIS**

Time: 3 Hours

Max Marks: 60

Section-A

I. Answer any Three of the following questions.

(3x5=15 Marks)

- 1. Show that the transformation $w = e^x$ maps the rectangular region $a \le x \le b$; $c \le y \le d$; on to the region $e^a \le \rho \le e^b$; $c \le \emptyset \le d$.
- 2. Use Cauchy-Riemann equations to the function $f(z) = z^2 = x^2 + y^2 + i2xy$, show that it is differentiable everywhere and that, f'(z) = 2z.
- 3. Evaluate $\int_{c}^{\infty} f(z)dz$, where $f(z) = \frac{z+2}{z}$ and c is the semi circle $z = 2e^{i\phi}(o \le \phi \le \pi)$.
- 4. Prove that $\left|\int_C \frac{z+4}{z^3-1} dz\right| \le \frac{6\pi}{7}$. Where C is the arc of the circle |z|=2 from z=2 to z=2i.
- 5. By using Cauchy's Integral formula, evaluate $\int_c \frac{e^{-z}dz}{z-\frac{\pi i}{z}}$ where C is the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$.
- State and prove Liouville's theorem.

Section-B

II. Answer the following questions.

(3x15=45 Marks)

- 7. (a) Suppose that f(z) = u(x, y) + iv(x, y); (z = x + iy) and $z_0 = x_0 + iy_0$; $w_0 = u_0 + iv_0$, then prove that $\lim_{z \to z_0} f(z) = w_0$ if and only if $\lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0$ and $(x,y) \to (x_0,y_0)^{V(x,y)} = v_0.$
 - (b) Derive Cauchy-Riemann Equations.
 - 8. (a) Evaluate $\int_{c} f(z)dz$ where f(z) is the branch $z^{-1+i} = \exp[(-1+i)\log z]$; $(|z| > 0, 0 < argz < 2\pi)$ of the indicated power function C is the circle, $z = e^{i\theta}$; $(0 \le \theta \le 2\pi)$

(OR)

- (b) Let C_R denote the upper half of the circle |z|=R, (R>2) taken in the counter clockwise direction, show that $\left|\int_{C_R} \frac{2z^2-1}{z^4+5z^2+4} dz\right| \leq \frac{\pi R (2R^2+1)}{(R^2-1)(R^2-4)}$ and hence show that the integral value is zero as $R \to \infty$
- 9. (a) If a function f is analytic throughout a simply connected domain D, then prove that $\int_C f(z)dz = 0$ for every closed contour C lying in D.

(b) State and prove the fundamental theorem of Algebra.