Code: 1821

Faculty of Sciences

M.Sc (Mathematics) II-Semester Regular Examinations, Aug-2023 Paper- I: ADVANCED ALGEBRA

Time: 3 Hours Max Marks: 70

Section-A

- I. Answer the following questions in not more than ONE page each (5x4=20 Marks)
 - 1. Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + x^n \in Z[x]$ be a monic polynomial. If f(x) has a root $a \in \emptyset$ then prove that $a \in Z$ and a/a_0 .
 - 2. Let P be a prime then prove that $f(x) = x^p 1 \in Q(x)$ has splitting field $Q(\alpha)$ where $\alpha \neq 1$ and $\alpha^p = 1$.
 - 3. Suppose H is a subgroup of $G\left(\frac{E}{F}\right)$ then prove that $F \subset E_H \subset E$.
 - 4. Show that the polynomial $x^7 10x^5 + 15x + 5$ is solvable by radicals over \emptyset .
 - 5. Show that $x^3 x 1 \in \emptyset(x)$ is irreducible over \emptyset .

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 Marks)
 - 6. (a) let $F \subseteq E \subseteq K$ be fields. If $[K: E] \propto \infty$ and $[E: F] \propto \infty$ then show that
 - (i) $[K:F] \propto \infty$
- (ii) [K:F]= [K:E][E:F]

(OR)

- (b) Let p(x) be an irreducible polynomial in F[x] and let u be a root of p(x) in an extension E of F. Let deg p(x)=n. If F(u) is the subfield of E generated by F and u, then prove that $\{1,u,u^2,...,u^{n-1}\}$ forms a basis of F(u) over F.
- 7. (a) Find the degree of the extension of the splitting field of $x^3 2 \in \emptyset(x)$

(OR)

- (b) If E is a finite separable extension of a field F, then prove that E is a simple extension of F.
- 8. (a) State and prove the fundamental theorem of Algebra.

(OR)

- (b) State and prove the fundamental theorem of Galois Theory.
- 9. (a) Let E be a finite extension of F. Suppose $f: G \to E^*$, $E^* = E (0)$ has the property that $f(\sigma \eta) = \sigma(f(\eta) f(\sigma))$ for all $\sigma \in G$ where $G = G(\frac{E}{F})$

(OR)

- (b) If F contains a primitive nth root of unity then prove that the following are equivalent.
 - (i) E is a finite cyclic extension of degree n over F.
 - (ii) E is the splitting field of an irreducible polynomial $x^n-b \in F(x)$.
- 10.(a) (i) If E is a finite extension of F the prove that E is an algebraic extension of F. (ii) If E is an extension of F and $u \in E$ is algebraic over F. Then prove that E is an algebraic extension.

(OR)

- (b) (i) Let U be a finite subgroup of the multiplicative group F{0}, where F is a field then prove that U is cyclic group
 - (ii) Complete $\phi_h(x)$

Code:1822

Faculty of Sciences

M.Sc (Mathematics) II-Semester Regular Examinations, Aug-2023 Paper- II: ADVANCE REAL ANALYSIS

Time: 3 Hours Max Marks: 70

Section-A

I. Answer the following questions in not more than ONE page each (5x4=20 Marks)

- 1. Let A be any subset of R with $m^*(A) < \infty$. Prove that given any $\epsilon > 0$ then exists an open set O such that $A \subset 0$ and $m^*(O) < M^*(A) + \epsilon$.
- 2. Define Lebesgue integral of a bounded measurable function. Suppose f, g are bounded measurable functions defined on a measurable Set E of finite measure and if f=g a.e prove that $\int_E f = \int_E g$.
- 3. Suppose f,g are functions of bounded variation m[a,b]. Prove that f + g is also a finte on a bounded variation on [a,b] also prove that $T_a^b(f+g) \le T_a^b(f) + T_a^b(g)$.
- 4. Suppose A is a linear operator in \mathbb{R}^n . Prove that A is invertible if and only if $\det |A| \neq 0$.
- 5. Suppose E is measurable subset of R. Prove that $E+\infty$ is measurable for any $\infty \in R$. Also prove that $m(E+\infty)=m(E)$.

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 Marks)
 - 6. (a) State and prove Littlewood third principle.

(OR)

- (b) Prove that every Borel set is measurable.
- 7. (a) State and prove Lebesque dominated convergence theorem .

(OR)

- (b) (i) State and prove Fatous Lemma for a sequence of non-negative measurable function.
 - (ii) State and prove monotone Convergence theorem for non-negative measurable function.
- 8. (a) If f is a bounded measurable function on [a,b] and if $|F(x)| = \int_a^x f(t)dt + F(a)$ then prove that F=f almost most every where on[a,b].

(OR)

- (b) State and prove Vital Convering lemma.
- (a)(i)If [A] and [B] are n by n matrices then prove that det ([B][A]) = det [B] det[A]. (ii)Prove that a linear operator A one Rⁿ is invertible if and only if det[A]≠0.

(OR)

- (b) State and prove inverse function theorem.
- 10.(a) State and prove Minkowski's inequality.

(OR)

(b) If X is a normal Linear space then prove that X is complete if and only if every absolutely summable series in X is summable in X.

Code: 2823/R

Faculty of Sciences

M.Sc (Mathematics) II-Semester Regular Examinations, Aug-2023 Paper- III: FUNCTIONAL ANALYSIS

Time: 3 Hours Max Marks: 70

Section-A

- I. Answer the following questions in not more than ONE page each (5x4=20 Marks)
 - 1. Prove that every finite dimensional subspace Y of a normed space X is closed in X.
 - 2. Prove that the space l^p with $p \neq 2$ is not a Hillbert space.
 - 3. Let M be a subset of an inner product space X. If M is total in X then prove that $x \perp M \Rightarrow x = 0$.
 - 4. For every fixed X in a normed space X, define a functional g_x on X' by $g_x(f) = f(x)$ prove that $||g_x|| = ||x||$.
 - 5. Let T be a bounded linear operator on a Hillbert space H, then prove that
 - (i) If T is self-adjoint <Tx,x> is real for all x ∈ H.
 - (ii) If H is complex and $\langle Tx, x \rangle$ is real for all $x \in H$, the operator T is self-adjoint.

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 Marks)
 - 6. (a) Prove that every normed space with schauder basis is separable.

(OR)

- (b) Let $\{x_1, x_2, x_n\}$ be a linearly independent set of vectors in a normed space X. Then prove that there is number c>0 such that for every choice of scalars $\alpha_1, \alpha_2 -\alpha_n$ we have $||\alpha_1 x_1 + \alpha_2 x_2 + \alpha_n x_n|| \ge (|\alpha_1| + |\alpha_2| + \cdots + |\alpha_n|)$, c>0
- 7. (a) State and prove Schwarz inequality and triangle inequality.

(OR)

- (b) (i) Let Y be a complete subspace of an inner product space X and $x \in X$ fixed. Then prove that Z=x-y is orthogonal to Y.
 - (ii) If Y is a closed subspace of a Hillbert space H. Then prove that Y=Y"
- 8. (a) State and prove Riesz representation theorem for Sesquilinear form.

(OR)

- (b) Let H be a Hillbert space. If H contains an orthonormal sequence which is total in H, then prove that H is separable.
- 9. (a) State and prove closed graph theorem.

(OR)

- (b) State and prove Generalized Haln- Branch theorem.
- 10.(a) Prove that two Hillbert spaces H and \widetilde{H} , both real or both complex are isomorphic if and only if they have the same Hillbert dimension.

(OR)

(b) State and prove Baire's Category theorem.

Code: 2824/R

Faculty of Sciences

M.Sc (Mathematics) II-Semester Regular Examinations, Aug-2023 Paper- IV: THEORY OF ORDINARY DIFFERENTIAL EQUATION

Time: 3 Hours Max Marks: 70

Section-A

- I. Answer the following questions in not more than ONE page each
 - 1. Define a Linear independence and dependence of the function defined on an interval I
 - 2. Prove that there exists three linearly independent solutions of the third order equation $x''' + b_1(t)x'' + b_2(t)x' + b_3(t)x = 0, t \in I$ where b_1, b_2 and b_3 are continuous functions defined on an internal I.
 - 3. Find e^{At} when $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$.
 - 4. Find the Lipschitz constant and bound for $f(t,x) = x^2$ in the region $R = \{(t, s): |t - 1| \le 1, |x + 1| \le 2\}$
 - 5. State contraction principle and also prove that contraction mapping is continuous.

Section-B

- II. Answer the following questions in not more than FOUR pages each 5x10=50 M
 - 6. (a) Let $\phi_1, \phi_2, \dots, \phi_n$ be 'n' linearly independent solution of the equation $L(x) = x^{(n)} + b_1(t)x^{(n-1)} + \dots + b_n(t)x = 0$, $t \in I$ let the real or complex valued function to be defined and continuous on I. Further assume that $w(t) = w(\emptyset_1, \emptyset_2, \dots, \emptyset_n)$ and w(t)denote the determinant w(t) and Kth column replaced by n elements 0,01 then prove that particular solution $l(x) = x^{(n)} + b_1(t)x^{(n-1)} + \dots + b_n(t)x = h(t)$ is

$$x_p(t) = \sum_{k=1}^n \emptyset_k(t) \int_{t_0}^{t_1} \frac{w_k(s)h(s)}{w(s)} ds, \ t \in I.$$

- (b) State and prove the Abel's formula.
- 7. (a) State and prove existence and uniqueness theorem for a homogeneous linear differential system $x^1 = A(t)x$, $x(t_0)$; $t, t_0 \in I$

(OR)

- (b) Determine the fundamental matrix from the system $X^1 = Ax$ where $A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 5 \end{bmatrix}$.
- 8. (a) State and prove Grownwall inequality and hence using it, prove that f(t)=0 for $t \ge t_0$ if $f(t) \le k \int_{t_0}^t f(s) ds$ where f and k are as defined in Grownwall inequality.

(OR)

- (b) Find first three successive approximation for the solution of IVP $x^1 = \frac{x}{1+x^2}$, x(0) = 1
- 9. (a) State and prove Bihari's inequality.

(OR)

- (b) Define equi-continuous. Let the function f(t,x) be continuous and bounded an the infinite strip $S = \{(t,x); t_0 \le t < t_0 + h, |x| < \infty \ (h > 0)\}$ in D. Then the IVP $x^1 = f(t,x)$, $x(t_0) = x_0$ has at least one solution x(t) existing on the interval $I = [t_0, t_0 + h]$.
- 10.(a) Solve $x''' + 6x'' + 11x^1 + 6x = 0$: $-\infty < t < \infty$.

(OR)

(b)Prove that the set of all solutions of the system $X^1 = A(t).X$ on I forms an ndimensional vector space over the field of complex numbers.

Code: 2825/R

Faculty of Sciences

M.Sc (Mathematics) II-Semester Regular Examinations, Aug-2023 Paper- V: DESCRETE MATHEMATICS

Time: 3 Hours Max Marks: 70

Section-A

- I. Answer the following questions in not more than ONE page each (5x4=20 M)
 - 1. Define a poset and dual of a poset, prove that the dual of a poset is also poset.
 - 2. Minimize the Boolean expression $E(x, y, z) = (X' \oplus y) \oplus y'$.
 - 3. Prove that there is an even number of vertices of odd degree in any graph.
 - 4. Define tree, directed tree, rooted tree and five suitable examples.
 - 5. Prove that K_s is the complete graph with five vertices in non-planar.

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 M)
 - 6. (a) let (L, \leq) be a lattice. For any $a, b, c \in L$ the following hold

(i) $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$

(ii) $a \le c \Leftrightarrow a \oplus (b * c) \le (a \oplus b) * c$

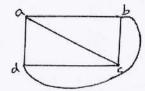
(iii) $a*(b\oplus c) \ge (a*b) \oplus (a*c)$

(OR)

- (b) (i) Define a distribution lattice. Is every Lattice distributive?
 - (ii) Prove that every chain is a distribution Lattice.
- 7. (a) Define a Boolean expression. Show that the Boolean expressions $(x \oplus y) * (x' \oplus z) * (y \oplus z)$ and $(x * z) \oplus (x' * y) \oplus (y * z)$ are equivalent. Obtain their sum of product canonical form.

(OR)

- (b) State and prove the Stone's representation theorem for finite Boolean algebra.
- 8. (a) (i) Prove that the following graphs are isomorphic.



(ii) How many isomorphisms can you find between them?

(OR)

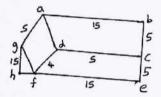
(b) (i) State and prove Euler's formula for connected planner graph.

Code: 2825/R

- (a) (i) Prove that a simple non-directed graph G is a tree iff G is connected and containing no cycles.
 - (ii) Prove that a tree with two or more vertices has at least two leaves.

(OR)

(b) (i) Determine a minimal spanning tree for the following weighted connected graph



- (ii) Define a cut set in a connected graph. Prove that a cut-set and any spanning tree in a connected graph have at least one edge in common .
- 10.(a) (i) Prove that every chain is a distributive Lattice.
 - (ii) Prove that the Demorgan's Law hold in a complemented distributive Lattice.

(OR)

(b)Let (L, \leq) be a lattice for $a, b, c \in L$ prove that the following properties

(i)
$$b \le c \Longrightarrow {a*b \le a*c \atop a \oplus b \le a \oplus c}$$
 (ii) $a \le b \iff a*b = a \iff a \oplus b = b$

Faculty of Sciences

M.Sc (Mathematics) I-Semester Regular Examinations, March-2023

Paper- I: ALGEBRA

Time: 3 Hours Max Marks: 70

Section-A

- I. Answer the following questions in not more than ONE page each (5x4=20 Marks)
 - 1. Define G-Set and give an example.
 - 2. Show that any group of order 119 in cyclic.
 - 3. Prove that the kernel of Homomorphism of a ring R into another ring R is an ideal of R
 - 4. State and prove Schur's lemma.
 - 5. Show that an group $\frac{Z}{(10)}$ is a direct sum of $H = \{\overline{0}, \overline{5}\}$ and $K = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 Marks)
 - 6. (a) State and prove Jordan- Holder's theorem.

(OR)

- (b) If G is a nilpotent group then prove that every subgroup of G and every homomorphic image of G are nilpotent .
- 7. (a) State and prove the first Sylow theorem.

(OR)

- (b) Let A be a finite abelian group then prove that there exists a unique list of integers m_1, m_2, \ldots, m_k (all > 1) such that $|A| = m_1, m_2, \ldots, m_k, m_1|m_2|\ldots, m_k$ and $A = c_1 \oplus c_2 \oplus \ldots \oplus c_k$ where c_1, c_2, \ldots, c_k are cyclic subgroups of A of order m_1, m_2, \ldots, m_k respectively.
- 8. (a) Let R be a non zero ring with unity 1 and I is an ideal of R such that $I \neq R$ then show that there exists a maximal ideal M of R such that $I \subseteq M$.

(OR)

- (b) Prove that every PID is a UFD, but a UFD is not necessarily a PID.
- 9. (a) Let R be a commutative ring with regular element let 'S' be the set of all regular elements in R then prove that R_s has the following properties.
 - R is embeddable in R_s
 - 2) Each regular element of R in invertible in R_s
 - Each element of R_s is of the form as⁻¹

(OR)

- (b) Let M be a finitely generated free module over a commutative ring R. then prove that all bases of M are finite.
- 10.(a) State and prove the fundamental theorem of homomorphism for groups.

(OR)

(b) Prove that an ideal M of a commutative ring R with unity is maximal ideal $\Leftrightarrow \frac{R}{M}$ is a field.

Code:1823/BL

Faculty of Sciences

M.Sc (Mathematics) I-Semester Backlog Examinations, Aug-2023 Paper- II: REAL ANALYSIS

Time: 3 Hours Max Marks: 70

Section-A

I. Answer the following questions in not more than ONE page each (5x4=20 Marks)

1. If $\sum a_n$ converges then prove that $\lim_{n\to\infty}a_n=0$.

- If f(x)=3 ∀ rational 'x' and f(x)=4 ∀ rational x then prove that 'f' is not Riemann integrable on [a,b].
- 3. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2x+1}$ converges uniformly on $[1,\infty]$.
- 4. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$ then prove that $||BA|| \le ||B|| \cdot ||A||$.
- 5. If $f.g \in R(\alpha)$ on [a,b] such that $f(x) \le g(x) \forall x \in [a,b]$ then prove that $\int_a^b f d\alpha \le \int_a^b g d\alpha$.

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 Marks)
 - (a) If f is a continuous function of a compact metric space X into a metric space Y, then prove that f is uniformly continuous on X.

(OR)

- (b) If f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X then prove that f(E) is a connected subset of Y.
- 7. (a) If P^* is the refinement of P, then prove that $L(P, f, \alpha) \le L(P^*, f, \alpha)$ and $U(P^*, f, \alpha) \le U(P, f, \alpha)$.

(OR)

- (b) Suppose $f:[a,b] \to R$ is continuous and $\alpha:[a,b] \to R$ is a monotonic in increasing function then prove that $f \in R(\alpha)$ on [a,b].
- 8. (a) Let α be monotonically increasing on [a,b]. Suppose $\{f_n\}_{n=1}^{\infty}$ on is a sequence of real valued function defined on [a,b] such that $f_n \in R(\alpha)$ on [a,b] for n=1,2,3.... and suppose $f_n \to f$ as $n \to \infty$ uniformly on [a,b]. then prove that $f_n \in R(\alpha)$ on [a,b] and $\int_a^b f d \propto = \lim_{n \to \infty} \int_a^b f_n d \propto$.

(OR)

- (b) State and prove Cauchy's criterion for uniformly convergence.
- (a) Prove that a linear operator A on a finite dimensional vector space X is one to one if and only if the range of A is all of X.

(OR)

- (b) Let Ω be the set of all invertible linear operators on \mathbb{R}^n then prove Ω is an open subset of $L(\mathbb{R}^n)$ and the mapping $A \to A^{-1}$ is continuous on Ω .
- 10.(a) If $f \in R$ on [a,b] and if there is a differentiable function F on [a,b] such that $F^1 = f$ then prove that $\int_a^b f(x)dx = F(b) F(a)$.

(OR)

(b) Prove that the continuous image of a compact metric space is compact.

Code: 1823/BL

Faculty of Sciences

M.Sc (Mathematics) I-Semester Backlog Examinations, Aug-2023

Paper-III: TOPOLOGY

Time: 3 Hours Max Marks: 70

Section-A

I. Answer the following questions in not more than ONE page each (5x4=20 Marks)

1. State and prove Lindelof's theorem.

2. Prove that any closed subspace of a compact space is compact.

Show that in a Hausdroff space any point and disjoint compact subspace can be separated by open sets.

4. State and prove Tychnoff's theorem

5. Let (X,Y) be a topological space and $A \subseteq X$. Prove that $\overline{A} = A \cup D(A)$ where D(A) is the derived set of A.

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 Marks)
 - 6. (a) Prove that every second countable space is separable. Is the converse true? If Yes, prove. If No, give counter example

(OR)

- (b) State and prove Kuratowski closure axioms.
- 7. (a) Define compact space. Prove that in a sequentially compact metric space, every open cover has a lebesgue number

(OR)

- (b) Prove that a metric space is sequentially compact if and only if it has Bolzano-Weiestrass property.
- 8. (a) State and prove Urysohn imbedding theorem.

(OR)

- (b) Let X be a T_1 space. Then prove that X is normal if and only if each neighborhood of a closed set F contains the closure of some neighborhood of F.
- 9. (a) Prove that the product of any non empty class of connected space is connected.

(OR)

- (b) (i) Let X be a topological space and A be connected subspace of X. If B is a subspace of X such that $A \subseteq B \subseteq \bar{A}$ then prove that B is connected.
 - (ii) Prove that a topological space is disconnected if and only if there exists a continuous mapping of X onto the discrete two-point space{0,1}.
- 10.(a) Prove that a metric space is compact if and only if it is complete and totally bounded.

(OR)

- (b) (i) Prove that a topological space X is a T_1 space if and only if each point set is a closed set.
 - (ii) A one-to-one continuous mapping of a compact space into a Hausdroff space is a homeomorphism.

Code: 1824/BL

Faculty of Sciences

M.Sc (Mathematics) I-Semester Backlog Examinations, Aug-2023 Paper-IV: ELEMENTARY NUMBER THEORY

Time: 3 Hours Max Marks: 70

Section-A

- I. Answer the following questions in not more than ONE page each (5x4=20 M)
 - 1. If $\frac{a}{bc}$ and (a,b) = 1, then prove that $\frac{a}{c}$
 - 2. If P is a prime and $\frac{P}{ab}$ then $\frac{P}{a}$ or $\frac{P}{b}$
 - 3. Define Euler totient function and find Ø(3), Ø(4)
 - 4. If $a \equiv b \pmod{m}$ and d/m then $a \equiv b \pmod{d}$.
 - 5. If m=n (mod P) then prove that $\left(\frac{m}{p}\right) = \left(\frac{n}{p}\right)$

Section-B

- II. Answer the following questions in not more than FOUR pages each (5x10=50 M)
 - 6. (a) State and prove Division algorithm theorem.

(OR)

- (b) Let a,b be two positive integers then prove that (a,b) [a,b] = a.b
- 7. (a) Prove that Dirichlet multiplication commutative and associative.

(OR)

- (b) State and prove Mobius inversion formula.
- 8. (a) If $a \equiv b \pmod{m}$ and $\alpha \equiv \beta \pmod{m}$ then
 - 1) $ax + \propto y \equiv bx = \beta y \pmod{m}$
 - 2) $a \propto \equiv b\beta \pmod{m}$
 - 3) $a^n \equiv b^n \pmod{m}$ where n, x, y are positive integers.

(OR)

- (b) If P > 1 integers with $(P 1)! \equiv -1 \pmod{P}$ then P is prime
- 9. (a) For every odd prime, prove that $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \left\{ \begin{array}{l} 1 \ if \ P \equiv 1 \ (mod \ 4) \\ -1 \ if \ P \equiv 3 \ (mod \ 4) \end{array} \right\}$ (OR)
 - (b) State and prove Gauss Lemma.
- (a) Let d=(826,1890). Use Euclidean Algorithm and express d as a linear combination of 826, 1890.

(OR)

(b) Assume that (a,m)=1, then prove that the linear congruence $ax \equiv b \pmod{m}$ has unique solution.

Code: 1825/BL

Faculty of Sciences

M.Sc (Mathematics) I-Semester Backlog Examinations, Aug-2023 Paper-V: MATHEMATICAL METHODS

Time: 3 Hours Max Marks: 70

Section-A

I. Answer the following questions in not more than ONE page each $(5\times4=20 \text{ M})$

1. Solve $z(z^2 + xy)(px - qy) = x^y$

2. Find the complete integral of the equation p(1+q) = qz

3. Show that $\mathcal{J}_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{\sin x}{x} - \cos x \right)$

4. Use generating function of $P_n(x)$, prove that $P_n(1) = 1$

5. $(D^2 + DD^1 + 2D^{12})z = e^{x+y}$

Section-B

II. Answer the following questions in not more than FOUR pages each (5x10=50 M)

6. (a) Explain Charpit's method and hence using it to solve $p^2x + q^2y = Z$.

(OR)

- (b) Find the eigen value and corresponding eigen function of the Strum-Liouville Boundary value problem $y^{11} + \lambda y = 0$; y(0) and $y^{1}(L) = 0$.
- 7. (a) Reduce the equation $(n-1)^2 \frac{\partial^2 z}{\partial x^2} (y)^2 \frac{\partial^2 z}{\partial y^2} = (ny)^{2n-1} \frac{\partial z}{\partial y}$ to canonical form, and find its general solution.

(OR)

- (b) Obtain the general solution of heat equation by using the method of separation of variables.
- 8. (a) State and prove the orthogonality property of Bessels function.

(OR)

(b) Prove the following.

1)
$$\frac{d}{dx}[x^{-n}\mathcal{J}_n(x)] = -x^{-n}\mathcal{J}_{n+1}(x)$$
 2) $x\mathcal{J}_n^1(x) = -n\,\mathcal{J}_n(x) + x\,\mathcal{J}_{n-1}(x)$

9. (a) State and prove the Generating function for Laguerre polynomials.

(OR)

- (b) Express $f(x) = x^3 2x^2 + 4x + 3$ in terms of Hermite polynomial
- 10.(a) Construct the Green's function from IVP $x^{11} = f(t), x(0) = 0, x(1) = 0$.

(OR)

(b)(i) Solve
$$(D^2 - DD^1 + 2D^{1^2})z = X + Y$$
. (ii) Solve $(D^2 + D^{1^2})z = \cos mx \cos ny$